There are four classifications of digital computer systems:

super-computer, mainframe computer, minicomputer, and microcomputer.

· Super-computers are very fast and powerful machines. Their internal architecture enables them to run at the speed of tens of MIPS (Million Instructions per Second). Super- computers are very expensive and for this reason are generally not used for CAD applications. Examples of super-computers are: Cray and CDC Cyber 205.

· Mainframe computers are built for general computing, directly serving the needs of business and engineering. Although these computing systems are a step below super- computers, they are still very fast and will process information at about 10 MIPS. Mainframe computing systems are located in a centralized computing center with 20-

100+ workstations. This type of computer is still very expensive and is not readily found in architectural/interior design offices.

· Minicomputers were developed in the 1960's resulting from advances in microchip technology. Smaller and less expensive than mainframe computers, minicomputers run at several MIPS and can support 5-20 users. CAD usage throughout the 1960's used minicomputers due to their low cost and high performance. Examples of minicomputers are: DEC PDP, VAX 11.

· Microcomputers were invented in the 1970's and were generally used for home computing and dedicated data processing workstations. Advances in technology have improved microcomputer capabilities, resulting in the explosive growth of personal computers in industry. In the 1980's many medium and small design firms were finally introduced to CAD as a direct result of the low cost and availability of microcomputers. Examples are: IBM, Compaq, Dell, Gateway, and Apple Macintosh.

The average computer user today uses a microcomputer. These types of computers include PC's, laptops, notebooks, and hand-held computers such as Palm Pilots. Larger computers fall into a mini-or mainframe category. A mini-computer is 3-25 times faster than a micro. It is physically larger and has a greater storage capacity.

A mainframe is a larger type of computer and is typically 10-100 times faster than the micro. These computers require a controlled environment both for temperature and humidity. Both the mini and mainframe computers will support more workstations than will a micro. They also cost a great deal more than the micro running into several hundred thousand dollars for the mainframes.


The term processor is a sub-system of a data processing system which processes received information after it has been encoded into data by the input sub-system. These data are then processed by the processing sub-system before being sent to the output sub-system where they are decoded back into information. However, in common parlance processor is usually referred to the microprocessor, the brains of the modern day computers.

There are two main types of processors: CISC and RISC.

CISC: A Complex Instruction Set Computer (CISC) is a microprocessor Instruction Set Architecture (ISA) in which each instruction can indicate several low-level operations, such as a load from memory, an arithmetic operation, and a memory store, all in a single instruction. The term was coined in contrast to Reduced Instruction Set Computer (RISC).

Examples of CISC processors are the VAX, PDP-11, Motorola 68000 family and the Intel x86/Pentium CPUs.

RISC: Reduced Instruction Set Computing (RISC), is a microprocessor CPU design philosophy that favors a smaller and simpler set of instructions that all take about the same amount of time to execute. Most types of modern microprocessors are RISCs, for instance ARM, DEC Alpha, SPARC, MIPS, and PowerPC.

The microprocessor contains the CPU which is made up of three components--the control unit supervises all that is going on in the computer, the arithmetic/logic unit which performs the math and comparison operation, and temporary memory. Because of the progress in developing better microprocessors, computers are continually evolving into faster and better units.


A laptop computer (also known as notebook computer) is a small mobile personal computer, usually weighing around from 1 to 3 kilograms (2 to 7 pounds). Notebooks smaller than an A4 sheet of paper and weighing around 1 kg are sometimes called sub-notebooks and those weighing around 5 kg a desk note (desktop/notebook). Computers larger than PDAs but smaller than notebooks are also sometimes called "palmtops". Laptops usually run on batteries.

Notebook Processor:

A notebook processor is a CPU optimized for notebook computers. All computing devices require a CPU. One of the main characteristics differentiating notebook processors from other CPUs is low-power consumption.

The notebook processor is becoming an increasing important market segment in the semiconductor industry. Notebook computers are an increasingly popular format of the broader category of mobile computers. The objective of a notebook computer is to provide the performance and functionality of a desktop computer in a portable size and weight. Wireless networking and low power consumption are primary consideration in the choice of a notebook processor.

Integrated Components

Unlike a desktop computer, a notebook has most of the components built-in or integrated into the computer. For desktop systems, determining which computer to buy is generally not based on what type of keyboard or mouse that is available. If you don't like the keyboard or mouse, you can always purchase something else. However, in the case of a notebook computer, the size of the keyboard or type of pointing device may be something that you need to consider unless you intend to use a regular mouse or full-sized keyboard. There are some notebooks that have a keyboard that expands when the notebook is opened which is a nice feature if you find the normal keyboard to be too small. Pointing devices vary from a touch pad to a stick within the keyboard to a roller or track-ball. Most notebooks have the video, sound, and speakers integrated into the computer and some notebooks even have a digital camera built-in which is very handy for video conferencing.


In computing, booting is a bootstrapping process that starts operating systems when the user turns on a computer system. A boot sequence is the set of operations the computer performs when it is switched on which load an operating system.

Everything that happens between the times the computer switched on and it is ready to accept commands/input from the user is known as booting.

The process of reading disk blocks from the starting of the system disk (which contains the Operating System) and executing the code within the bootstrap. This will read further information off the disk to bring the whole operating system online. Device drivers are contained within the bootstrap code that support all the locally attached peripheral devices and if the computer is connected to a network, the operating system will transfer to the Network Operating system for the "client" to log onto a server

The Process of loading a computer memory with instructions needed for the computer to operate. The process and functions that a computer goes through when it first starts up, ending in the proper and complete loading of the Operating System. The sequence of computer operations from power-up until the system is ready for use


The cold booting is the situation, when all the computer peripherals are OFF and we start the computer by switching ON the power. WARM BOOTING:

The warm booting is the situation, when we restart the computer by pressing the RESET button and pressing CTRL+ ALT + DEL keys together.

Graphic User Interface (GUI)

A program interface that takes advantage of the computer's graphics capabilities to make the program easier to use. Well-designed graphical user interfaces can free the user from learning complex command languages.On the other hand, many users find that they work more effectively with a command-driven interface, especially if they already know the command language.

No comments:

Post a Comment